Impact de la TEP au Florbetaben sur le diagnostic et la prise en charge de patients éligibles à une analyse du LCR pour une suspicion de maladie d’Alzheimer

*Service de Biophysique et Médecine Nucléaire & DHU-Imaging, CHU Timone, Marseille

neuus in AD
Neuraceq Utility Study in Alzheimer Disease
Disclosure

Consultant: GE Healthcare, Lilly, **Piramal**

Research & clinical trials: Eisaï, Pfizer, Sanofi, Lilly, Novartis, Roche, MSD, Biogen
• In daily practice Alzheimer’s disease (AD) is not easily diagnosed in patients presenting with **complex clinical presentations** (atypical clinical profiles, eg non amnestic – aphasic, visual… – profiles, early onset dementia…)

• **AD-specific biomarkers** can be measured:
 – indirectly by assessing Aβ42, T tau and PH tau levels in cerebrospinal fluid (CSF)
 – directly through positron emission tomography (PET) using amyloid-specific ligands

Florbetaben (18F) / NeuraCeq™

Introduction

Neuraceq Utility Study in Alzheimer Disease

neuus in AD

HAS recommends the use of LP in clinical practice in complex or atypical clinical presentations http://www.has-sante.fr

Measuring CSF biomarkers of AD is recommended in case of diagnostic uncertainty, particularly in young patients

The use of CSF biomarkers has long been part of routine clinical practice of French CMRR to differentiate AD from non-AD aetiologies in atypical dementia and doubtful cases
In few cases CSF analysis
- may be uninterpretable for technical reasons
- may not be feasible
 o refusal
 o contraindications
- may be considered as “non-contributory” by the clinician
 o ambiguous CSF result
 - values close to threshold
 - or only one or two abnormal biomarkers out of three
 o CSF result inconsistent with clinical information

a collaborative work
- implemented in the French clinical practice setting
- between French tertiary memory clinics (FCMRR), Nuc Med Dpts and Piramal
- in order to investigate the impact of florbetaben amyloid PET on diagnosis and management in these patients
Phase 4 multicentre open-label study (ClinicalTrials.gov: NCT02681172)
- conducted in the outpatient setting of 19 CMRR
 - approval from Institutional Review Boards or Independent Ethics Committees
 - in accordance with the Declaration of Helsinki and International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use Good Clinical Practice guidelines

Objective
- This study was designed to evaluate the potential impact of use of Florbetaben PET scan in diagnosis and management of patients for whom CSF examination was planned but was not performed or was considered as non-contributory:
 - change in clinical diagnosis made by clinicians in patients in whom a Florbetaben PET scan was performed
 - increase in clinician diagnosis confidence for these patients after use of Florbetaben PET scan
 - change in management of the patient
Methods

• Population
 - Patients being evaluated for AD, but aetiology of symptoms unexplained after a complete diagnostic work up
 - Patients were eligible if lumbar puncture (LP) and CSF examination were planned but
 1. results of CSF analysis were considered as non-contributory; or
 2. LP was refused by the patient; or
 3. LP was not feasible for medical reasons

• Outpatient setting of 19 centres of the network of French tertiary memory clinics (CMRR)

<table>
<thead>
<tr>
<th>Visit 1</th>
<th>Visit 2</th>
<th>Visit 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinician</td>
<td>Nucl. Med</td>
<td>Clinician</td>
</tr>
<tr>
<td>• Initial diagnosis (1-3 hypotheses)</td>
<td>• Florbetaben scan</td>
<td>• Final diagnosis (1-3 hypotheses)</td>
</tr>
<tr>
<td>• Diagnostic confidence (5-point Likert scale)</td>
<td>• Visual assessment</td>
<td>• Diagnostic confidence</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Diagnosis change</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Management plan change</td>
</tr>
</tbody>
</table>
The full study cohort included 205 patients, of whom 42.4% (n=87) underwent LP, but results were considered as “not contributory” by the expert clinician.
Diagnosis (probability level 1),* n (%)

<table>
<thead>
<tr>
<th>Diagnosis (neurodegenerative)</th>
<th>Prior scan n=205</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD dementia</td>
<td></td>
</tr>
<tr>
<td>Sporadic AD, atypical form</td>
<td>67 (32.7)</td>
</tr>
<tr>
<td>Early-onset AD</td>
<td>50 (24.4)</td>
</tr>
<tr>
<td>Sporadic AD, typical form</td>
<td>27 (13.2)</td>
</tr>
<tr>
<td>Rapid progressive AD (CJD excluded)</td>
<td>4 (2.0)</td>
</tr>
<tr>
<td>Non-AD dementia</td>
<td>32 (15.6)</td>
</tr>
<tr>
<td>Fronto-temporal lobar dementia</td>
<td>14 (6.8)</td>
</tr>
<tr>
<td>Primary progressive aphasia</td>
<td>8 (3.9)</td>
</tr>
<tr>
<td>Lewy body disease</td>
<td>7 (3.4)</td>
</tr>
<tr>
<td>Cortico-basal dementia</td>
<td>2 (1.0)</td>
</tr>
<tr>
<td>Semantic dementia</td>
<td>1 (0.5)</td>
</tr>
<tr>
<td>Parkinson's disease</td>
<td>-</td>
</tr>
<tr>
<td>Mixed dementia</td>
<td>17 (8.3)</td>
</tr>
<tr>
<td>Non-neurodegenerative dementia</td>
<td>10 (4.9)</td>
</tr>
<tr>
<td>Psychiatric disorders</td>
<td>3 (1.5)</td>
</tr>
<tr>
<td>Vascular dementia</td>
<td>2 (1.0)</td>
</tr>
<tr>
<td>Other</td>
<td>5 (2.4)</td>
</tr>
</tbody>
</table>

*Clinicians could report up to three possible diagnoses for each patient and indicate the probability by rank order. Level 1 was defined as the most probable of up to three potential hypotheses; †Two patients had two level 1 diagnoses with equal probability.
Change in diagnosis

- **Florbetaben-PET status**
 - PET negative n=73
 - PET positive n=132

- **Change of diagnosis** after florbetaben imaging reported in:
 - 67% (137/205) of cases, independently of amyloid status
 - 58% (76/132) of positive amyloid cases
 - 84% (61/73) of negative amyloid cases
Aetiology of patients with a changed diagnosis

- Of 67% (137/205) patients with a changed diagnosis:
 - 76 PET+ and 61 PET-

prior fluorbetaben: 63% (48/76) AD
post fluorbetaben: 87% (66/76) AD

Prior fluorbetaben: 67% (41/61) AD
Post fluorbetaben: 5% (3/61) AD
Florbetaben improved diagnostic confidence

- Confidence at initial diagnosis was moderate
- Improved confidence reported for 81% (167/205) of patients after disclosure of florbetaben results and re-assessment
Change in Management

- **Change of management** after florbetaben imaging reported in:
 - 80% (164/205), independently of amyloid status
 - 80% (106/132) of positive amyloid cases
 - 80% (58/73) of negative amyloid cases
 - 51% (104/205) of patients had initiation or withdrawal of medication, additional diagnostic tests, or referral to another specialist
Assessment of the Incremental Diagnostic Value of Florbetapir F 18 Imaging in Patients With Cognitive Impairment
The Incremental Diagnostic Value of Amyloid PET With [¹⁸F]-Florbetapir (INDIA-FBP) Study

Marina Boccardi, PhD; Daniele Altomare, MS; Clarissa Ferrari, PhD; Cristina Festari, MS; Ugo Paolo Guerra, MD; Barbara Paghera, MD; Claudio Pizzocaro, MD; Giulia Lussignoli, MD; Cristina Geroldi, MD; Orazio Zanetti, MD; Maria Sofia Cotelli, MD; Marcella Turla, MD; Barbara Borroni, MD; Luca Rozzini, MD; Darío Mirabile, MD; Carlo Defanti, MD; Michele Gennuso, MD; Alessandro Preile, MD; Simona Gentile, MD; Alessandro Morandi, MD; Stefano Vollaro, MD; Giorgio Dalla Volta, MD; Angelo Bianchetti, MD; Marta Zaffira Conti, MD; Melania Cappuccio, MD; Pasquolina Carbone, MD; Daniele Bellandi, MD; Luciano Abruzzo, MD; Luigi Bettoni, MD; Daniele Villani, MD; Maria Clara Raimondi, MD; Alessia Lanari, MD; Alfonso Ciccone, MD; Emanuela Facchi, MD; Ignazio Di Fazio, MD; Renzo Rozzini, MD; Stefano Boffelli, MD; Laura Manzonli, MD; Giovanni Pietro Salvi, MD; Sabina Cavaliere, MD; Gloria Belotti, MD; Stefano Avanzi, MD; Patrizio Pasqualetti, MS; Cristina Muscio, PhD; Alessandro Padozani, MD; Giovanni B. Frisoni, MD; for the Incremental Diagnostic Value of Amyloid PET With [¹⁸F]-Florbetapir (INDIA-FBP) Working Group

Participants were consecutive patients receiving care at AD evaluation units for diagnosis of cognitive abnormalities and suspicion of AD. Inclusion criteria were cognitive abnormality, age between 50 and 85 years, availability of an informant (spouse, adult child, or other knowledgeable informant), and a prescan diagnostic confidence of AD between 15% and 85%.

Figure 2. Amyloid Positron Emission Tomography Result and Diagnostic Change by Prescan Diagnosis

<table>
<thead>
<tr>
<th>Prevalence (%)</th>
<th>AD positive</th>
<th>AD negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>90%</td>
<td>40%</td>
</tr>
<tr>
<td>Non-AD</td>
<td>60%</td>
<td>30%</td>
</tr>
</tbody>
</table>

Postscan diagnostic changes occurred only in the Alzheimer disease (AD)-negative and in non-AD-positive groups.

Figure 4. Cognition-Specific and Non-Cognition-Specific Medication Prescriptions After Amyloid Positron Emission Tomography (PET)

Prescriptions for cognition-specific medications (acetylcholinesterase inhibitors and memantine hydrochloride) and non-cognition-specific medications (anxiolytics, hypnotics, antidepressants, antipsychotics, and anticonvulsants) that were introduced after amyloid PET in patients who were previously not receiving the same medication or discontinued after amyloid PET in patients who were previously receiving it. All changes were significant at P < .001 in a 1-sample proportions test.
The present study included a consecutive series of patients visiting a Dutch tertiary memory clinic and suspected of mild dementia (defined as Mini Mental State Examination (MMSE) score ≥ 18) or early-onset dementia (defined by age at diagnosis ≤ 70 years), who had no firm diagnosis after the standardized dementia evaluation or persisting diagnostic uncertainty (defined as pre-PET diagnostic confidence < 90% as measured by a standardized study questionnaire). We excluded 17...

Clinical diagnosis was established by consensus in a multidisciplinary meeting using established clinical criteria [13–17] without knowledge of PET or CSF results or APOE carrier status. Patients were divided...

Fig. 1 Diagnostic confidence prior to PET related to a changed diagnosis and b changed patient management plan. AD Alzheimer’s disease dementia, non-AD non-AD diagnosis, PET positron emission tomography.
Conclusions

- This naturalistic study provides evidence that florbetaben PET has a significant diagnostic impact in patients eligible for CSF according to HAS and in whom uncertainty is particularly common (early-onset, atypical, mixed, rapidly progressing)

 - **Frequent diagnosis changes (67%)** reported, particularly for PET negative (84%)
 - **Diagnostic confidence increased for 81%** of patients, particularly for PET positive (88%)
 - **Management changes reported for 80%** of patients

- The results highlight the significant clinical utility of amyloid PET imaging for patients with complex dementia presentations in the context of the existing workup
Thanks to the NEUUS in AD study group

- **Amiens**: Olivier Godefroy, Daniela Andriuta, Agnès Devendeville, Diane Dupuis, Ingrid Binot, Mélanie Barbay, Marc-Etienne Meyer, Véronique Moullard
- **Besançon**: Eloi Magnin, Ludivine Chamard, Sophie Haffen, Olivier Morel, Clément Drouet, Hatem Boulahdour
- **Brest**: Philippe Goas, Solène Querellou-Lefranc
- **Caen**: Vincent de la Sayette, Julien Cogez, Pierre Branger, Denis Agostini, Alain Manrique
- **Dijon**: Olivier Rouaud, Yannick Bejot, Agnès Jacquin-Piques, Inna Dygai-Cochet, Alina Berriolo-Riedinger
- **Grenoble**: Olivier Moreaud, Mathilde Sauvee, Céline Gallazzani Crépin
- **Lille**: Florence Pasquier, Stéphanie Bombois, Thibaud Lebouvier, Marie-Anne Mackowiak-Cordoliani, Vincent Deramecourt, Adeline Rollin-Sillaire, Pascaline Cassagnaud-Thuillet, Yo-hua Chen, Franck Semah, Grégory Petyt
- **Lyon**: Pierre Krolak-Salmon, Denis Federico, Keren Li-ora Danaila, Yves Guilhermet, Christophe Magnier, Zaza Makaroff, Isabelle Roux, Jing Xie, Caroline Roubaud, Marie-Hélène Coste, Kenny David, Alain Sarciron, Aziza Sediq Waissi, Christian Scheiber, Claire Houzard
- **Marseille**: Olivier Felician, Mira Didic, Claude Gueriot, Lejla Koric, Radka Kletchkova-Gantchev, Eric Guedj
- **Montpellier**: Audrey Gabelle-Deloustal, Karim Bennys, Cecilia Marelli, Lynda Touati, Denis Mariano-Goulart, Delphine de Verbizier-Lonjon
- **Nancy**: Thérèse Jonveaux, Athanase Benetos, Anna Kearney-Schwartz, Christine Perret-Guillaume, Antoine Verger.
- **Nantes**: Martine Vercelletto, Claire Boutouleau-Bretonnière, Hélène Pouclet-Courtemanche, Nathalie Wagemann, Amandine Pallardy
- **Paris (AP-HP), Hôpital de Lariboisière – F. Widal**: Jacques Hugon, Claire Paquet, Julien Dumurgier, Pascal Millet, Mathieu Queneau
- **Paris (AP-HP), Hôpital de la Pitié-Salpêtrière**: Bruno Dubois, Stéphane Epelbaum, Marcel Levy, Marie-Odile Habert.
- **Reims**: Jean-Luc Novella, Yacine Jaidi, Dimitri Papatkanassiou, David Morland
- **Rennes**: Serge Belliard, Anne Salmon, Florence Lejeune
- **Rouen**: Didier Hannequin, David Wallon, Olivier Martinaud, Aline Zarea, Mathieu Chastan
- **Toulouse**: Jérémie Pariente, Julien Delrieu, Pierre-Jean Ousset, Françoise Lala, Nathalie Sastre-Hengan, Claire Thalamas, Monique Galitzky-Gerber, Anne-Marie Tricore Ricard, Fabienne Calvas, Emilie Rigal, Pierre Payoux, Anne Hitzel
- **Piramal Imaging**: Audrey Perrotin, Nicola Raffa, Aleksandar Jovalekic, Santiago Bullich, Rossella Gismondi, Andrew Stephens